Régression linéaire

David Causeur

Laboratoire de Mathématiques Appliquées Agrocampus Rennes IRMAR CNRS UMR 6625

http://www.agrocampus-rennes.fr/math/causeur/

Plan de la présentation

- 1 Introduction
- 2 Approche exploratoire
 - Graphiques
 - Coefficient de corrélation linéaire
- Approche inférentielle
 - Le modèle de régression linéaire simple
 - Test du lien entre x et Y
 - Estimation des paramètres
 - Prédiction
- Ouverture

00 000000000 0000 00

Approche inférentielle

Problématique

Etude du lien entre 2 variables quantitatives

L'appréciation globale dépend-t'elle de l'amertume perçue

00 000000000 0000 00

Approche inférentielle

Problématique

Etude du lien entre 2 variables quantitatives

- L'appréciation globale dépend-t'elle de l'amertume perçue ?
- Peut-on prévoir le chiffre de ventes du mois prochain ?

Problématique

Etude du lien entre 2 variables quantitatives

- L'appréciation globale dépend-t'elle de l'amertume perçue ?
- Peut-on prévoir le chiffre de ventes du mois prochain ?
- La note au bac est-elle liée à celle du 3ème trimestre ?
- ...

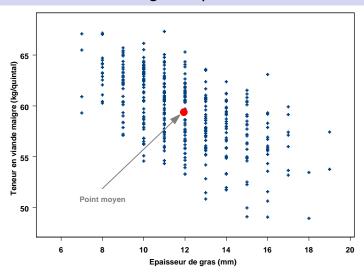
Un problème de prédiction

	x = Épaisseur de	y = Teneur en viande			
	gras (mm)	maigre (kg/quintal)			
1	12	56.52			
2	13	57.58			
3	11	55.89			
4	10	61.82			
5	9	62.96			
6	10	54.58			
7	7	67.09			
8	15	55.00			
9	10	60.49			
<u>:</u>	:	<u>:</u>			

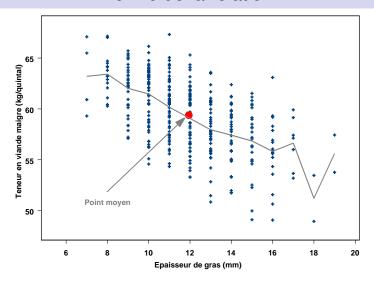
Plan de la présentation

- Introduction
- 2 Approche exploratoire
 - Graphiques
 - Coefficient de corrélation linéaire
- 3 Approche inférentielle
 - Le modèle de régression linéaire simple
 - Test du lien entre x et Y
 - Estimation des paramètres
 - Prédiction
- Ouverture

Nuage de points



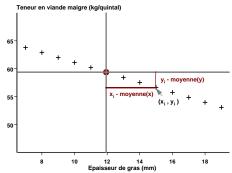
Forme de la relation



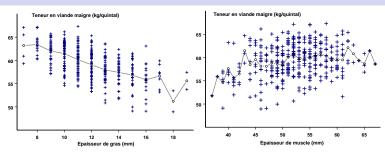
Elen inteane partar

Les variations de *y* sont proportionnelles à celles de *x*

$$(y_i - \bar{y}) = k(x_i - \bar{x})$$



Intensité du lien linéaire



Intuition:

le lien Teneur en viande maigre × Ép. de gras est plus fort que le lien Teneur en viande maigre × Ép. de muscle

Mesure de la corrélation linéaire

Objectif: mesurer l'intensité du lien linéaire

Mesure de la corrélation linéaire

Objectif: mesurer l'intensité du lien linéaire

Propriété : mesure indépendante des unités de mesure

Mesure de la corrélation linéaire

Objectif: mesurer l'intensité du lien linéaire

Propriété : mesure indépendante des unités de mesure

Idée ... : mesurer les variations en nombres d'écarts-types

Variable	Valeur	Écart à la	Écart à la moyenne
	observée	moyenne	(en nb d'écarts-types)
X	Xi	$X_i - \bar{X}$	$\frac{x_i - \bar{x}}{S_x}$
y	Уi	$y_i - \bar{y}$	$\frac{y_i - \bar{y}}{S_y}$

Données centrées-réduites

	x = Épa	aisseur de gras	y = Teneur en viande maigre			
	Donnée	Donnée	Donnée	Donnée		
	(mm)	centrée-réduite	(kg/quintal)	centrée-réduite		
1	12	0.03	56.52	-0.79		
2	13	0.45	57.58	-0.50		
3	11	-0.40	55.89	-0.97		
4	10	-0.82	61.82	0.68		
5	9	-1.24	62.96	1.00		
6	10	-0.82	54.58	-1.33		
7	7	-2.08	67.09	2.14		
<u>:</u>	:	:	:	:		

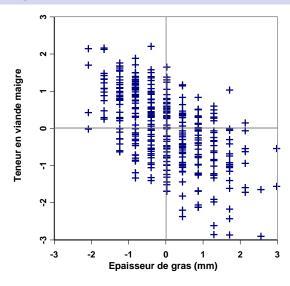
Répartition des données centrées réduites

Données centrées réduites (y)

Approche inférentielle



Nuage des données centrées réduites



$$r(x,y) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{S_x} \right) \left(\frac{y_i - \bar{y}}{S_y} \right),$$
$$= \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{S_x S_y} = \frac{S_{xy}}{S_x S_y}$$

$$r(x,y) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{S_x} \right) \left(\frac{y_i - \bar{y}}{S_y} \right),$$
$$= \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{S_x S_y} = \frac{S_{xy}}{S_x S_y}$$

•
$$-1 \le r(x, y) \le 1$$

$$r(x,y) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{S_x} \right) \left(\frac{y_i - \bar{y}}{S_y} \right),$$
$$= \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{S_x S_y} = \frac{S_{xy}}{S_x S_y}$$

- $-1 \le r(x, y) \le 1$
- $r(x,y) > 0 \Rightarrow$ relation linéaire croissante

$$r(x,y) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{S_x} \right) \left(\frac{y_i - \bar{y}}{S_y} \right),$$
$$= \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{S_x S_y} = \frac{S_{xy}}{S_x S_y}$$

- $-1 \le r(x, y) \le 1$
- $r(x, y) > 0 \Rightarrow$ relation linéaire croissante
- $r(x, y) < 0 \Rightarrow$ relation linéaire décroissante

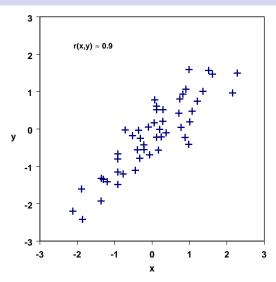
$$r(x,y) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{S_x} \right) \left(\frac{y_i - \bar{y}}{S_y} \right),$$
$$= \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{S_x S_y} = \frac{S_{xy}}{S_x S_y}$$

- $-1 \le r(x, y) \le 1$
- $r(x, y) > 0 \Rightarrow$ relation linéaire croissante
- $r(x, y) < 0 \Rightarrow$ relation linéaire décroissante
- $r(x, y) = 0 \Rightarrow$ pas de relation linéaire

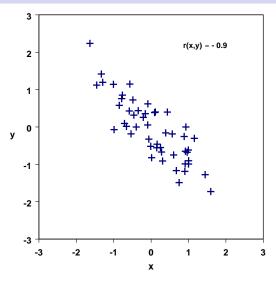
$$r(x,y) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{S_x} \right) \left(\frac{y_i - \bar{y}}{S_y} \right),$$
$$= \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{S_x S_y} = \frac{S_{xy}}{S_x S_y}$$

- $-1 \le r(x, y) \le 1$
- $r(x, y) > 0 \Rightarrow$ relation linéaire croissante
- $r(x, y) < 0 \Rightarrow$ relation linéaire décroissante
- $r(x, y) = 0 \Rightarrow$ pas de relation linéaire
- $r(x, y) = \pm 1 \Rightarrow y = \beta_0 + \beta_1 x$

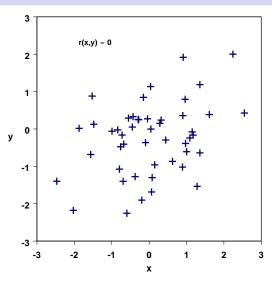
Relation linéaire croissante

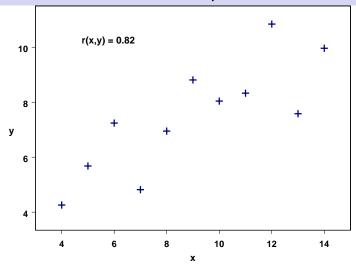


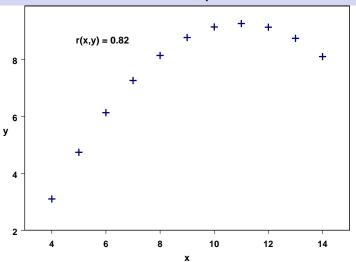
Relation linéaire décroissante

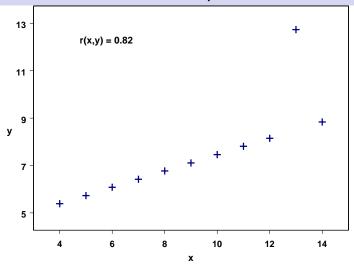


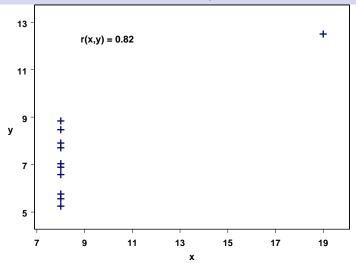
Pas de relation linéaire











Matrice de corrélation

	Maths			Philosophie				
	1er t.	2ème t.	3ème t.	Bac	1er t.	2ème t.	3ème t.	Bac
M_1	1.00	0.77	0.72	0.58	0.19	0.22	0.16	0.24
M_2	0.77	1.00	0.81	0.66	0.20	0.25	0.22	0.30
M_3	0.72	0.81	1.00	0.68	0.22	0.26	0.24	0.30
M_{bac}	0.58	0.66	0.68	1.00	0.17	0.23	0.21	0.28
P_1	0.19	0.20	0.22	0.17	1.00	0.64	0.61	0.42
P_2	0.22	0.25	0.26	0.23	0.64	1.00	0.69	0.43
P_3	0.16	0.22	0.24	0.21	0.61	0.69	1.00	0.47
P_{bac}	0.24	0.30	0.30	0.28	0.42	0.43	0.47	1.00

Plan de la présentation

- Introduction
- 2 Approche exploratoire
 - Graphiques
 - Coefficient de corrélation linéaire
- Approche inférentielle
 - Le modèle de régression linéaire simple
 - Test du lien entre x et Y
 - Estimation des paramètres
 - Prédiction
- Ouverture

Approche inférentielle

Objectifs

• Tester l'existence d'une relation entre x et y

Objectifs

- Tester l'existence d'une relation entre x et y
- Construire une équation de prédiction de y par x

Approche inférentielle

Objectifs

- Tester l'existence d'une relation entre x et y
- Construire une équation de prédiction de y par x
- Calculer un intervalle de confiance (d'estimation, de prédiction, ...)

Le modèle de régression linéaire simple

Y : variable à expliquer (à prédire, endogène, réponse, dépendante) quantitative

x : variable explicative (prédictrice, exogène, covariable, indépendante) quantitative

Le modèle de régression linéaire simple

Y : variable à expliquer (à prédire, endogène, réponse, dépendante) quantitative

x : variable explicative (prédictrice, exogène, covariable, indépendante) quantitative

Pour un x fixé, Y est une variable aléatoire

Le modèle de régression linéaire simple



Le modèle de régression linéaire simple

Y : variable à expliquer (à prédire, endogène, réponse, dépendante) quantitative

x : variable explicative (prédictrice, exogène, covariable, indépendante) quantitative

Pour un *x* fixé, *Y* est une variable aléatoire

$$Y = \underbrace{\beta_0 + \beta_1 x}_{\text{Variations imputables à x}} + \underbrace{\varepsilon}_{\text{Variations non-imputables à x}}$$
 $\varepsilon \sim \mathcal{N}(0; \sigma)$

Paramètres du modèle

- Coefficients du modèle :
 - β_0 ordonnée à l'origine
 - β_1 pente

Paramètres du modèle

- Coefficients du modèle :
 - β_0 ordonnée à l'origine
 - β_1 pente
- Écart-type résiduel : σ

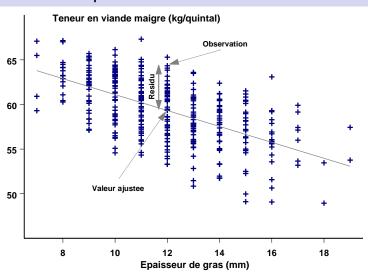
Existence d'un lien entre x et Y

 H_0 : il n'y a pas de lien entre x et Y

 H_1 : il y a un lien entre x et Y

ou encore ...

 H_0 : $\beta_1 = 0$, H_1 : $\beta_1 \neq 0$



Décomposition de la variabilité de Y

Equation d'«analyse de la variance»

$$\underbrace{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}_{\text{SCET}} = \underbrace{\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2}_{\text{SCEM}} + \underbrace{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}_{\text{SCER}}$$

Décomposition de la variabilité de Y

Equation d'«analyse de la variance»

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 + \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
SCET SCEM

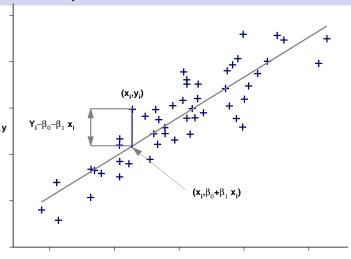
Problème : ajustement du modèle ($\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$)

Ajustement par la méthode des moindres carrés

Une mesure de l'adéquation entre modèle et données : le critère des moindres carrés $SC(\beta_0, \beta_1)$

$$SC(\beta_0, \beta_1) = \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 x_i)^2$$

Ajustement par la méthode des moindres carrés



Ajustement par la méthode des moindres carrés

Une mesure de l'adéquation entre modèle et données : le critère des moindres carrés $SC(\beta_0, \beta_1)$

$$SC(\beta_0, \beta_1) = \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 x_i)^2$$

Les estimateurs $\hat{\beta}_0$ et $\hat{\beta}_1$ minimisent $SC(\beta_0, \beta_1)$

$$x \mapsto \hat{\beta}_0 + \hat{\beta}_1 x$$
 droite de régression

Minimisation du critère des moindres carrés

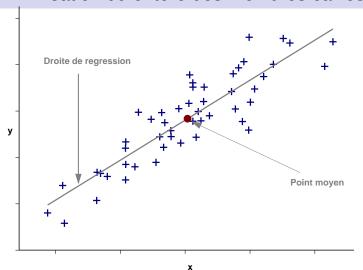
$$\frac{\partial SC}{\partial \beta_0}(\hat{\beta}_0, \hat{\beta}_1) = 0$$

$$-2\sum_{i=1}^n \left(Y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i\right) = 0$$

$$\bar{Y} - \hat{\beta}_0 - \hat{\beta}_1 \bar{x} = 0$$

$$\bar{Y} = \hat{\beta}_0 + \hat{\beta}_1 \bar{x}$$

Minimisation du critère des moindres carrés



Minimisation du critère des moindres carrés

Approche inférentielle 000000000

$$\frac{\partial SC}{\partial \beta_0}(\hat{\beta}_0, \hat{\beta}_1) = 0$$

$$-2\sum_{i=1}^n \left(Y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i\right) = 0$$

$$\bar{Y} - \hat{\beta}_0 - \hat{\beta}_1 \bar{x} = 0$$

$$\bar{Y} = \hat{\beta}_0 + \hat{\beta}_1 \bar{x}$$

Le point moyen (\bar{x}, \bar{Y}) est sur la droite de régression

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{x}$$

$$SC(\hat{\beta}_0, \beta_1) = \sum_{i=1}^n ([Y_i - \bar{Y}] - \hat{\beta}_1 [x_i - \bar{x}])^2$$

$$SC(\hat{\beta}_0, \beta_1) = \sum_{i=1}^{n} ([Y_i - \bar{Y}] - \hat{\beta}_1 [x_i - \bar{x}])^2$$

$$\frac{\partial SC}{\partial \beta_1}(\hat{\beta}_0, \hat{\beta}_1) = 0$$

$$SC(\hat{\beta}_0, \beta_1) = \sum_{i=1}^n \left(\left[Y_i - \bar{Y} \right] - \hat{\beta}_1 \left[x_i - \bar{x} \right] \right)^2$$

$$\frac{\partial SC}{\partial \beta_1}(\hat{\beta}_0, \hat{\beta}_1) = 0$$

$$-2\sum_{i=1}^n [x_i - \bar{x}] \left([Y_i - \bar{Y}] - \hat{\beta}_1 [x_i - \bar{x}] \right) = 0$$

$$SC(\hat{\beta}_0, \beta_1) = \sum_{i=1}^n \left(\left[Y_i - \bar{Y} \right] - \hat{\beta}_1 \left[x_i - \bar{x} \right] \right)^2$$

$$\frac{\partial SC}{\partial \beta_1}(\hat{\beta}_0, \hat{\beta}_1) = 0$$

$$-2\sum_{i=1}^n [x_i - \bar{x}] \left([Y_i - \bar{Y}] - \hat{\beta}_1 [x_i - \bar{x}] \right) = 0$$

$$S_{xy} - \hat{\beta}_1 S_x^2 = 0$$

$$SC(\hat{\beta}_0, \beta_1) = \sum_{i=1}^n \left(\left[Y_i - \bar{Y} \right] - \hat{\beta}_1 \left[x_i - \bar{x} \right] \right)^2$$

$$\frac{\partial SC}{\partial \beta_1}(\hat{\beta}_0, \hat{\beta}_1) = 0$$

$$-2\sum_{i=1}^n [x_i - \bar{x}] \left([Y_i - \bar{Y}] - \hat{\beta}_1 [x_i - \bar{x}] \right) = 0$$

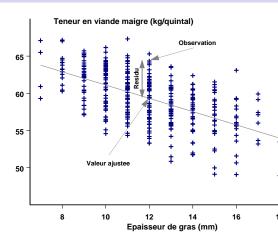
$$S_{xy} - \hat{\beta}_1 S_x^2 = 0$$

$$\hat{\beta}_1 = \frac{S_{xy}}{S_x^2}$$

Valeurs ajustées et résidus d'ajustement

Valeurs ajustées

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

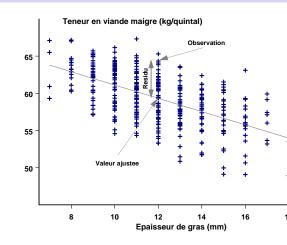


Valeurs ajustées

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

Résidus

$$\hat{\varepsilon}_i = Y_i - \frac{1}{n} \sum_{i=1}^n \hat{\varepsilon}_i = 0$$



Valeurs ajustées et résidus d'ajustement

Valeurs ajustées

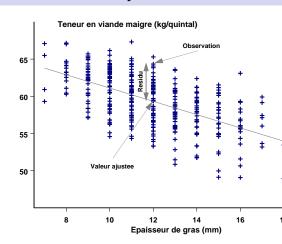
$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

Résidus

$$\hat{\varepsilon}_i = Y_i - \frac{1}{n} \sum_{i=1}^n \hat{\varepsilon}_i = 0$$

Décomposition

$$Y_i = \hat{Y}_i + \hat{\varepsilon}_i$$



Part de variabilité de Y imputable à x

Equation d'«analyse de la variance»

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 + \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
SCET SCEM

Part de variabilité de Y imputable à x

Equation d'«analyse de la variance»

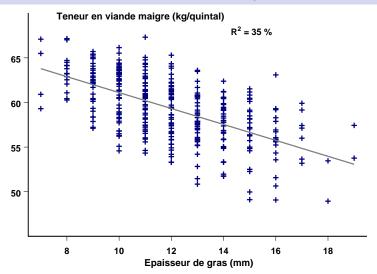
$$\underbrace{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}_{\text{SCET}} = \underbrace{\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2}_{\text{SCEM}} + \underbrace{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}_{\text{SCER}}$$

Part de variabilité expliquée par le modèle

$$R^2 = \frac{\text{SCEM}}{\text{SCET}} = 1 - \frac{\text{SCER}}{\text{SCET}}$$

= $[r(x, y)]^2$

Part de variabilité de Y imputable à x



Test du lien entre x et Y

Approche inférentielle 000000000

Equation d'«analyse de la variance»

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 + \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
SCET SCEM

Test du lien entre x et Y

Equation d'«analyse de la variance»

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 + \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
SCET SCEM

Sous l'hypothèse d'absence de lien

$$\mathsf{F} = \frac{\frac{\mathsf{SCEM}}{2-1}}{\frac{\mathsf{SCER}}{n-2}} = \frac{\mathsf{CMF}}{\mathsf{CMR}} \sim \mathcal{F}_{1,n-2}$$

Illustration

Table d'analyse de la variance

	Degrés de liberté	SC	СМ	F	Probabilité critique
Epaisseur de gras	1	1535.53	1535.53	181.04	0.00
Résiduelle	342	2900.69	8.48		

Estimation des coefficients

• $\hat{\beta}_0$, $\hat{\beta}_1$ sont sans biais

Estimation des coefficients

- $\hat{\beta}_0$, $\hat{\beta}_1$ sont sans biais
- Variance d'estimation :

$$Var(\hat{\beta}_1) = \frac{1}{n} \frac{\sigma^2}{S_x^2}$$

Estimation des coefficients

- $\hat{\beta}_0$, $\hat{\beta}_1$ sont sans biais
- Variance d'estimation :

$$Var(\hat{\beta}_1) = \frac{1}{n} \frac{\sigma^2}{S_x^2}$$

Estimation de la variance d'estimation :

$$\widehat{\text{Var}}(\hat{\beta}_1) = \frac{1}{n} \frac{\hat{\sigma}^2}{S_v^2}$$

Estimation de σ

σ^2 , variance résiduelle

$$\hat{\sigma}^2 = \frac{1}{n-2} \underbrace{\sum_{i=1}^{n} \left[Y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i \right]^2}_{\text{SCER}}$$

Nombre de degrés de liberté de SCER

$$ddl_r = n - 2$$

Exemple

	Coefficients	Écart-type	Statistique t	Probabilité critique	
Constante	70,03	0,81	86,75	6,02E-235	
Variable X 1	-0,89	0,07	-13,46	2,05E-33	

	Limite inférieure	Limite supérieure		
	(seuil de confiance = 95%)			
Constante	68,45	71,62		
Variable X 1	-1,02	-0,76		

Écart-type résiduel : 2.91

Tous différents de 0 !

	Maths				Philosophie			
	1er t.	2ème t.	3ème t.	Bac	1er t.	2ème t.	3ème t.	Bac
M_1	1.00	0.77	0.72	0.58	0.19	0.22	0.16	0.24
M_2	0.77	1.00	0.81	0.66	0.20	0.25	0.22	0.30
M_3	0.72	0.81	1.00	0.68	0.22	0.26	0.24	0.30
M_{bac}	0.58	0.66	0.68	1.00	0.17	0.23	0.21	0.28
P_1	0.19	0.20	0.22	0.17	1.00	0.64	0.61	0.42
P_2	0.22	0.25	0.26	0.23	0.64	1.00	0.69	0.43
P_3	0.16	0.22	0.24	0.21	0.61	0.69	1.00	0.47
P _{bac}	0.24	0.30	0.30	0.28	0.42	0.43	0.47	1.00

Problématique

On connaît x_0 mais pas Y_0

Prédicteur

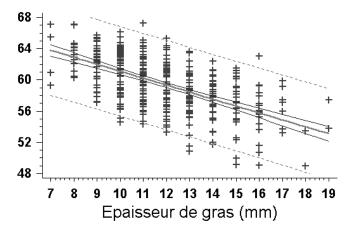
$$\hat{Y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$$

Erreur de prédiction

$$\begin{array}{rcl} \hat{\varepsilon}_0 & = & Y_0 - \hat{Y}_0 \\ \mathbb{E}(\hat{\varepsilon}_0) & = & 0 \end{array}$$

Variance de prédiction

Teneur en viande maigre (kg/quintal)



Plan de la présentation

Approche inférentielle

- - Graphiques
- - Le modèle de régression linéaire simple
 - Test du lien entre x et Y
 - Estimation des paramètres
 - Prédiction
- **Duverture**

Ouverture

 Extension à plusieurs variables explicatives (Module suivant)

Ouverture

- Extension à plusieurs variables explicatives (Module suivant)
- Extensions non-linéaires (Microbiologie, Economie, ...)

Ouverture

- Extension à plusieurs variables explicatives (Module suivant)
- Extensions non-linéaires (Microbiologie, Economie, ...)
- Prise en compte de variables explicatives quantitatives et qualitatives (Analyse de la covariance)